Query complexity of generalized Simon's problem

نویسندگان

چکیده

Simon's problem plays an important role in the history of quantum algorithms, as it inspired Shor to discover celebrated algorithm solving integer factorization polynomial time. Besides, for has been recently applied break symmetric cryptosystems. Generalized problem, denoted by $\mathsf{GSP}(p,n,k)$, is a natural extension problem. In this paper we consider query complexity $\mathsf{GSP}(p,n,k)$. First, not difficult design above with $O(n-k)$. However, so far clear what classical and revealing necessary clarifying computational power gap between computing on To tackle prove that any (deterministic or randomized) $\mathsf{GSP}(p,n,k)$ at least $\Omega\left(\max\{k, \sqrt{p^{n-k}}\}\right)$ values nonadaptive deterministic \sqrt{k \cdot p^{n-k}}\}\right)$ values. Hence, clearly show model less powerful than counterpart, terms generalized Moreover, obtain upper bound $O\left(\max\{k, devising subtle based group theory divide-and-conquer approach. Therefore, have almost full characterization

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Moment Problem with Complexity Constraint

In this paper, we present a synthesis of our differentiable approach to the generalized moment problem, an approach which begins with a reformulation in terms of differential forms and which ultimately ends up with a canonically derived, strictly convex optimization problem. Engineering applications typically demand a solution that is the ratio of functions in certain finite dimensional vector ...

متن کامل

Open Problem: The Statistical Query Complexity of Learning Sparse Halfspaces

We consider the long-open problem of attribute-efficient learning of halfspaces. In this problem the learner is given random examples labeled by an unknown halfspace function f on R. Further f is r-sparse, that is it depends on at most r out of n variables. An attribute-efficient learning algorithm is an algorithm that can output a hypothesis close to f using a polynomial in r and log n number ...

متن کامل

The quantum query complexity of the abelian hidden subgroup problem

Simon in his FOCS’94 paper was the first to show an exponential gap between classical and quantum computation. The problem he dealt with is now part of a well-studied class of problems, the hidden subgroup problems. We stu<dy Simon’s problem from the point of view of quantum query complexity and give here a first nontrivial lower bound on the query complexity of a hidden subgroup problem, namel...

متن کامل

On the Complexity of the Generalized MinRank Problem

We study the complexity of solving the generalized MinRank problem, i.e. computing the set of points where the evaluation of a polynomial matrix has rank at most r. A natural algebraic representation of this problem gives rise to a determinantal ideal: the ideal generated by all minors of size r+1 of the matrix. We give new complexity bounds for solving this problem using Gröbner bases algorith...

متن کامل

the problem of divine hiddenness

این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information & Computation

سال: 2021

ISSN: ['0890-5401', '1090-2651']

DOI: https://doi.org/10.1016/j.ic.2021.104790